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1) The importance of obtaining the adiabatic cloud drop 
number concentration (Nc) 

2) How to get the adiabatic Nc from cloud radar

3) Some interesting results on AIE-I using the adiabatic Nc.



Aerosol Mass CCN (Step 1/2) Adiabatic Cloud Drop Concentration Nc (1)

Actual Nc (Step 1½) Cloud Effective Radius (2)

Cloud Optical Depth and Cloud Albedo (3)  

Adiabatic Nc is the critical variable that links Step (1) to Step (2)
Measurement of Adiabatic Nc is still missing

The first AIE involves a series of processes linking various intermediate variables 



Assuming that CCN spectrum in the form of CCN=CSk (S: supersaturation, C and 
k a fitting parameters), Twomey derived the following analytical expression: 

2)k/(k3/2
2)2/(k

a
ad

c B(k/2,3/2)k
cw)(fNN

+

+
⎥
⎦

⎤
⎢
⎣

⎡
=

k2
2

lnN
lnNα

a

ad
c

T +
=

∂
∂

≡

Nc
ad: adiabatic Nc

Na: aerosol number concentration
w:   updraft velocity

Twomey then suggested that the first AIE for adiabatic cloud should be:
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Comparison Twomey-suggested ααTT with in-situ measurement ααΔΔ
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On average, αΔ is about half of αT, but more scattered



According to Twomey’s analytical solution:

This discrepancy between ααΔΔ and ααTT may arise from changes in:

1) Aerosol activation efficiency, 2) Cloud adiabaticity and 3) Updraft velocity 
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If the cloud adiabaticity influence (β) is removed, the difference between 
ααTT and ααΔΔ can be mostly explained by the change in aerosol particle size.
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The first AIE for adiabatic cloud 
is NOT Twomey-suggested αT
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Na1                             <                          Na2

Activation efficiency: f1                              >        f2

Reduce the effectiveness of aerosol particles as CCN by 1) suppressing the maximum 
supersaturation and 2) by changing the aerosols’ physicochemical properties



Assuming that liquid water content increases adiabatically with height (H) yields

Radar Reflectivity (Z) cN
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1) no integrated quantity being used
2) no multi-layer clouds problem
3) insensitive to entrainment evaporation at cloud top
4) Nc is close to its adiabatic value (so it can be related to CCN spectrum directly)



Good profile: ~15%
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Average over 5 min
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Nc derived from WACRAerosol observation system  Na +

CCN spectrum parameters
(k and f)
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αT = 2/(k+2) χ0.6-αα TΔ =ad

Directly-measured AIE-I
Angstrom exp.
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Our ground-based method corroborates our previous satellite results:

1) Additional aerosols can reduce the efficiency of aerosols to active as cloud 
condensation nuclei

2) Unlike the semi-direct effect (Hudson and Yum, 1997) and the dispersion 
effect (Liu and Daum, 2002), this offsetting mechanism takes place at the 
initial stage of drop formation and can compete the Twomey-suggested 
AIE-I substantially.

Future work:

1) Aerosol activation efficiency will be directly related to CCN spectrum 
parameters k and f.

2) The response of supersaturation to the change in aerosol number 
concentration will be examined.


