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ACRF Data << Modeling Skill

* Other scientific accomplishments
e Science plan contributions

— Priority science questions
— Data needs



M-PACE Intercomparison Wrap-Up

* 26 models took part

* Two papers in press at QJRMS
— H. Morrison and 29 co-authors (Case A)
— S. Klein and 40 co-authors (Case B)
* Models tend to underestimate the amount

of supercooled liquid in single-layer clouds
but overestimate it in multi-layer clouds

 More sophisticated cloud microphysical
parameterizations do perform better, but ...



M-PACE Intercomparison Wrap-Up
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Effect of Assumed Ice Habit (Case B)

Mass-size relation Fallspeed-size relation

hexagonal plates

I'erminal velocity [m/s]

spheres

Diameter [mm]

Diameter [mm]

 Models assume simple mass-size and fallspeed-size
relationships

* Based on data, but with large ranges
e Typically must assume some habit type a-priori




Effect of Assumed Ice Habit (Case B)
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Effect of Ice Fora@@@}ﬁcanon (Case B)
e e @ff’%ﬁ“@
SE

EVAP_RM EVAP_DS

At 283.833 At 283.833 (m'ﬁs")!

Key results:

4+ Ice nucleation from activation of evaporation
nuclei occurs mostly near cloud top areas, while
ice nucleation from the drop evaporation freezing
has no significant location preference. Although ice
nucleation occurs at very different rates and
locations, two mechanisms give similar cloud
properties.

+ IN recycling from ice evaporation is very
important to maintain the steady ice formation in
mixed-phase clouds.

Data streams used:

(a) In-situ aircraft data: IN and microphysical
properties.

(b) Ground-based remote sensing data:

* MIMICR radar reflectivity, Doppler velocity,
etc.

e Radar and lidar retrievals: LWP, IWP, cloud
base, etc.



» Context: Arctic aerosol indirect
effects on mixed-phase clouds
may be accelerating sea ice melt b

* Past Results: Detailed model
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* Approach: Simulate cloud radar
reflectivity and Doppler velocity,

* Results: Additional evidence of crucial
gaps in knowledge of cloud ice formation

 Publication: “An evaluation of ice
formation ...” by Bastiaan van
Diedenhoven et al. (JGR, in press)

* Related Work: Simulations now being
used at JPL to study radar configurations
for the ACE Decadal Survey mission
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GCM Aerosol-Cloud Interactions (Case B)

To understand details of aerosol-cloud processes most critical in representing climate we
(1)  use detailed models (SCM and WRF) with ARM IOP data to improve cloud parameterizations

and then implement them in a GCM;

(1) compare cloud and radiation parameters with CMBE data to develop useful metrics.

Results

1.  The standard bulk scheme in the GISS SCM
now includes a two-moment (2-Mom) and a bin
resolved cloud scheme.

This allows for a better representation of
liquid to ice mixing ratios for mixed-
phase clouds and compares well with
observations (MPACE 2004 campaign)
(Sednev et al. 2008, ACPD)

2. The two-moment scheme (Morrison et al. 2008) is
now implemented in the GISS GCM and is
being evaluated with ARM CMBE data from
the SGP, TWP and NSA sites (Menon et al.
2009 in preparation, also see ARM Poster).
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Behay[}zc}éof Immersion Ice Nuclei (SHEBA)
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TWP-ICE Intercomparison Game-On

* Four prongs
— Cloud-resolving models (CRMs)
— Single-column models (SCMs)
— Limited-area models (LAMs)
— Numerical weather prediction (NWP) models

 Coordination
— Jon Petch, UK Met Office

— GEWEX Cloud System Study program’s
Precipitating Cloud Systems (PCS)

— Stratopheric Processes and their Role in
Climate (SPARC)



TWP-ICE CRM / Fridlind
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TWP-ICE SCM / Laura Davies

TWP-ICE SCM
intercomparison
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TWP-ICE NWP / Yanluan Lin
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TWP-ICE LAM / Maria Russo
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ISDAC £5bAc Break-our @ 1-3 pmg

(Indirect Semi-Direct Aerosol Campaign, McFarquhar & Ghan PI’s)

 Two “golden” days, 8 & 26 April 2008:

— Single-layer mixed-phase clouds; N%AWH 2008, Fiight #31
%,
— Multiple flights + ground observations; 7

— Exceptional aerosol measurements (size,

08 April 2008, Flight#16

composition, hygroscopicity, CCN, IN, etc) N Barrow
e QOpportunities for closure studies, e
process and regional modeling - T ko

e Large-scale forcing available
e Contrast with M-PACE:

— polluted vs. “clean” environment;

— radiatively vs. surface-flux driven
clouds.




ACRF Data <> Modeling Skill

* Model intercomparisons
— M-PACE (NSA)
— TWP-ICE (TWP)
— ISDAC (NSA)

e Science plan contributions

— Priority science questions
— Data needs



Representation of Shallow Cu In WRF
(Berg et al.)

 The Cumulus Potential (CuP) scheme couples
boundary-layer turbulence with shallow clouds
(Berg and Stull 2005)

— Replace trigger function in Kain-Fritsch scheme
e Used operationally in support of CLASIC

e Two data sets of have been constructed for
model evaluation

— Cloud macroscale properties (Berg and Kassinov 2008)
e Data from

— Surface cloud radiative forcing (Berg et al., Poster 8B)
* Data from ACRF VAPS:

e Data from ACRF Pl Product: (created by C.
Long)



PosTer gg

CuP Case study results, 18 July 2004

Default WRF Cloud Frac., z=3 km CuP WRF Cloud Frac., z=3 km
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» Default KF: No clouds near CF

» CuP-KF: Clouds near CF, increased convection
within the domain

CF TSI Image at
22:00 UTC




Use ARM data to assess convection theories—-1 ==

(Yunyan Zhang et/al.)

ARM SGP
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Cloud Radar
(MMCR
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Vertical Velocity of cloud liquid

droplets in non-precipitating
shallow cumulus is retrieved
uniquely based

measurement (Pavlos Kollias).
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*» The updraft mass flux and updraft fraction
are comparable to previous LES study

= the net mass flux behavior fluctuates
around zero at all levels because of the
similarity between updraft and downdraft

= We plan to perform LES for the composite
case and sample it the same way as OBS do
to investigate if these OBS are specific
feature for shallow cumulus over land

Reference Poster: Zhang, Klein & Kollias



Use ARM data to assess convection theories - 2 L@_:“

On the preconditioning of free The impact of boundary layer
troposphere humidity for deep convection inhomogeneity on deep convection
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*  Correlation between MSE STD and precip.
rate shows that MSE STD leads precip.
especially at the earlier stage of deep
convection (data from S\MOS and OK Mesonet)

few hours before deep convection develops

* The afternoon rain statistics is related to the
precipitable water vapor (PWV) above mixed layer
at 1130 local time (data from LSSONDE & ABRFC precip)

Reference Poster: Zhang, Klein & Kollias



Using ARM data to improve convection parameterization and GCM simulations (Guang Zhang)

1. Improve cloud shortwave response to El Nino in NCAR CAM3 (Li and Zhang, JGR 2008)
2. Reduce double ITCZ biases in the NCAR CCSM3 (Zhang and Wang, GRL 2006)

3. Further improve convection parameterization by incorporating the effect of lateral entrainment in

convection closure assumptions (Zhang JGR 2009)

ERBE/CERES CTRL
(a) ERBE/CERES (b) CAM3 Ctrl

000 T T T [ T [ T 17 2001 EGFE T T
g
2000+ 1 2000 =

1999 4 1999
100 T i | oo
1997 4 1997
1996 4 1996
1995+ 4 1995 ~
1994 1 1994
B
1993 4 1993E
|

19921 1 1992
1991 1 1991
1990 1 1990

1989 %?ﬁ 1989

1988 | <eniimm

e
1987F —< Y

1986 | 'tnjt 1986

1985F 07— SREES - e O

1984} 1 1984 -

1983} 1 1983

1982} 1 1982

1981} 1 1981

tggol o | [ Lo |y ] 1980 1980

Longitude

SWCEF response to El Nino

Longitude

IMPROVED

= I R e
150E 170E 170W 150W 130W 110W 150E 170E 170W 150W 130W 110W 150E 170E 170W 150W 130W 110W

Longitude

4(0(}? JJA rainfall in NCAR CCSM3 (mm/da

ARM data used for
convection
parameterization
development and
improvement: SGP
and TWP-ICE SCM
Forcing data, C-Pol
Radar data

30 Standard CCSM3

408
120E 140E 160E 180 160W 140W 120W 100W

4(&) CCSM3 with improved convection

403
T20E 140E 160E 180 160W 140W 120W 100W
4(0 Xie—Arkin observations

308 CMAP Obs

40
120E 140E 160E 180 160W 140W 120W 100W

0 0.5 1 2 4 5 6 7 El

Double ITCZ

10 12 17



1 1 1 1 1 1 1 1 1

04

MAM — CRM 11 JJA

— OBS

0.3
=
£02
£
0.1
0

0 4 8 12 16 20230 4 8 12 16

LST (hour) LST (hour)

20 220 4 8 12 16 20280 4 8 12 16 20
LST (hour) LST (hour)

30E 60E S90E 120E 150E 180 150W 120W 90W 6OW 30W 0

30E 30E 60E SO0E 120E 150E 180 150W 120W 90W 60W 30W

| DO e T

0 01 02 03 04 05 06 07 08 09

0 0005 001 002 003 004 005 01 02



CRM application (Norris et al.,, QTRMS, 2008)
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RAN=Random Overlap
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Cloud Overlap Modeling with Gaussian Copulas

(Norris, Oreopoulos, Hou, Tao, Zeng)
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RAIS=Raisanen-like generalized overlap
XOR=Exact overlap, randomized WC
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MRO=Maximum Random Overlap (Geleyn & Hollingsworth)
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ARM application (see
Norris et al., poster)

Microbase 10 sec data

T

e Copula fits are possible if
enough of the condensed tail
of the total water distribut-
ion is observable.

*  The variance of copula-
generated IWP fields agree
fairly well with that of
original fields.

* Parameterization of the
copula covariance matrix will
advance 6CM cloud overlap.



PREC in mm/day

ARM Project Title: Development of ensemble neural network

convection parameterizations for climate models using ARM data
Pl: M. Fox-Rabinovitz (University of Maryland (UMD)), Co-Pl: V. Krasnopolsky (UMD and NCEP), POSTER YH
Co-I: P. Rasch (DOE PNNL and NCAR), Collaborators: Y. Kogan (OU), and A. Belochitski (UMD)
Project Period: 08/01/08 - -7/31/11, Acknowledgements: Prof. M. Hairoutdinov, SUNY, Dr. P. Blossey, UWA

The research is aimed at development of novel and more sophisticated and fast convection
parameterizations for multi-scale complex systems climate models based on applying statistical learning
techniques, namely Neural Networks (NN), i.e. on direct learning cloud physics from simulated SAM/CRM
data. NN serves as an interface transferring information about sub-grid scale processes from fine scale
data or models (CRMs) into larger scale GCMs (i.e., for upscaling). The impact of the choice of inputs/
outputs for developing NN convection parameterizations on their accuracy is shown in Figs. 1, 2.

£

25ﬁ\1|\\|{\|[\\|\]|\
—— NN (5)

——NN(3)
(C) = = = NN (5) on Training Set

25
e L e e I B B B B
Red - (5): CC = 0.79 Red - (5) [
Blue - (3); CC = 0.70 Blue - ) 3 Be- 0

Black - (2); CC = 0.59 ' \ G r 0 en - Da i a | . } (b) Black - (2)

20 [—

@ FY
o o

N
o

' \\IHI\I‘IH\HIH|\lI\IHI\’IHHIHI‘IHIHI

B

_IIII|III|IIII|III[|II\[_

=
4\\\I|IIII|I\\‘\\\\‘\\\\4

[ IR B! ol L bt by AR Lo Lo L
2 4 6 2 4 6 .00 0.05 0.10 0.15
atc a2 cwo
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Conclusions:

1. Methodology for development of NN convection parameterizations for climate models based on learning from SAM simulated data
has been formulated. ARM, TOGA-COARE and other relevant data are used for driving SAM simulations.

2. Training data sets have been produced using SAM simulated ensemble data produced with different initial conditions.

3. NN convection parameterizations with different NN architectures have been developed and their accuracy estimated. Errors for
precipitation, Q1C & Q2, and CLD decrease for the NN architecture (5) vs. the NN architectures (2) and (3).

4. Significant improvement is obtained for NN precipitation accuracy (Fig. 1): CC (Correlation Coefficient) increases: (a) from CC =
0.59 for the NN Architecture (2) with Inputs: temperature (TABS) and water vapor (QV) profiles and Outputs: Q1, Q2, and PREC
profiles; (b) to CC = 0.70 for the NN Architecture (3) with the additional Input: the vertical velocity (W) profile; (c) to CC = 0.79 for
the NN Architecture (5) with the additional Output: the cloud fraction (CLD) profile. Q1C, Q2, CLD also improved for (5) (Fig. 2).
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ACRF CO,, LH, and SH Exchanges

Riley et al. (submitted JGR-B; 2009)

* Integrated climate forcing, satellite observations, eddy
covariance measurements, and a land-surface model

* Land-cover heterogeneity strongly affected flux estimates
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Clouds and Diffuse Radiation Impacts on Surface Fluxes

* Isotopes (l.e., 0) in H,0 and CO, reflect surface exchange variations
— Used for model forcing

* Clouds have a large impact on ecosystem CO, and H,O fluxes, and on leafwater
080 values and C*00 exchanges

— Despite lower irradiance under clouds, predicted forest photosynthesis was
higher than on clear days; opposite effect was predicted for grasses

— Highest tree canopy C*800 fluxes under partly cloudy conditions; highest
grass canopy C*200 fluxes under clear skies
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Climate Modeling Best Estimate (CMBE) fosrzz 12
Data Used in NCAR and GFDL

(Xie, Klein, et al.)

NCAR CAM3

Seasonal Variation of Clouds
at SGP

ARM

3 8

pressure level
Height (km)

pressure level
Helght (km)

S@ sy oA WNN = =
§8d 8§28 888 8 3
882 5888 ¢ 3

MIN = -5.04 MAX = 47.67

5 40 55 65 75 85

MIN = 0.00 MAX = 21.80

5 "EESS_EEESC B
CAM3-ARM

pressure level
Height (km)

&
70
100
150
200
250
300
400
500
700
850
1000

MIN = -14.82 MAX = 32.31

[T O TT T .
(Courtesy of R. Neale of NCAR)

CAM3 produces too much high cloud in warm
season (May-Sept) and less mid- or low-level cloud
in cold season (Oct. — April) at SGP .

GFDL AM3 Poster 4x
Diurnal Cycle of T2m and
Precip at SGP
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(Courtesy of Y. Lin of GFDL)

AMB3 shows a warm bias in 2 meter temperature
and fails to capture nocturnal precipitation
during the summer months at SGP.



hPa

hPa

100

1000 L

100

1000C

Ensemble Forcing data sets

TWP-1CcE EREAK-OUT @ 3:30-5 PM

(Jakob et al.)

omega (averaged over active monsoon period)

hPa/hour

omega (averaged over suppressed monsoon period)

* Method:

* Estimate errors in rainfall retrievals
from radar

* Feed rainfall pdf into variational
analysis to provide 100 forcing data

sets
* Available data:

* The method has been successfully
applied to the TWP-ICE period
* Data is available through the TWP-

ICE SCM intercomparison
* Future plans:

* Work on creating a continuous
ensemble forcing set for two full wet
seasons at Darwin is almost
complete.



ACRF Data Modeling Skill

* Model intercomparisons
— M-PACE (NSA)
— TWP-ICE (TWP)
— ISDAC (NSA)

* Other scientific accomplishments



Science Plan Input

 What are the outstanding aerosol, cloud, radiation and precipitation
guestions for ARM science in the next five years?

— Better understanding of the for shallow cumulus clouds
— Better understanding of the
that trigger
convection

— Almost every aspect of convection ( effects),

y , and , and ,as well as

and
— Better understanding of the behavior of convection
— Better understanding of the interactions and
, including but not limited to the role of

— Better understanding of the role of in the climate system
— Some continued focus on the of various cloud types (may be wise to

use findings from cloud-climate feedback studies to provide this focus)
— Better understanding of phenomena
— Evaluations of the above processes in and parameterization in



Science Plan Input

 What ARM observations and data products are needed to address
these questions? Are current ARM locations sufficient?

in both non-precipitating and precipitating clouds and
also in clear air (perhaps from doppler lidar just beneath cloud base)

of cloud properties, aerosols and cloud-scale
vertical velocity, as well as the large-scale conditions in which the cloud
fields are embedded

parameters
— Better

measurements
that are time continuous and have adaptive error bars

sets
— Of course the current locations are not sufficient
— A TWP site with a weather radar would be good (e.g., Kwajalein)



Science Plan Input

* How can ARM be more effective in improving aerosol, cloud,
radiation and precipitation parameterizations in global climate
models?

— Provide by the modeling community,
such as cloudiness and aerosol optical depth

— Support and expand because the data base is
still hard for modelers to use

— Organize in which people with interests in observations,
process understanding, and modeling truly work together

— Work and leverage with such as DOE ASP, NASA to obtain

— Support further

— Support further development of methodologies that
, such as the GCM NWP-mode framework (CAPT)



Science Plan Input

How can ARM science be more effective in addressing the
outstanding science questions identified by organizations such as
the Intergovernmental Panel on Climate Change and the National

Academy of Sciences?

— Reduce uncertainties associated with (understand)

— Understand in climate models
— To address IPCC concerns about low-level clouds,
— Encourage ARM scientists to in the national and international

assessment processes (built-in mechanism needed?)



ACRF Data Modeling Skill

Today
— Tony Del Genio, NASA GISS:

— Yanluan Lin, NOAA GFDL:
— Maike Alhgrimm, ECMWF:

— Jerome Fast: The Aerosol Modeling Testbed: A Community Tool to
Objectively Evaluate Aerosol Process Modules

Tomorrow

— Seoung-Soo Lee: Aerosol Effects on Liquid Water Path of Thin
Stratocumulus Clouds

— Hugh Morrison, NCAR: A Novel Approach for Treating Ice Microphysics in
Bulk and Bin Schemes: Application to TWP-ICE Deep Convection

— Martial Haeffelin: Cirrus Cloud Radiative Forcing on Surface-level
Shortwave and Longwave Irradiances at Regional and Global Scale



