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Objectives Data used

Cirrus clouds play an important role 1n the climate system owing to their interwoven microphysical, dynamical, and radiative properties.
- The objective of this study 1s not only to characterize, but most importantly to quantify the different dynamical regimes 1n layers having |
different stratification defined on the basis of the thermodynamical properties of the cloud system. - A case study of cirrus cloud

- The backscattering cross-section signal n(t) is non-stationary, with highly irregular and clustered fluctuations owing to a set of various i e system observed on
influences governing the particle motions at different temporal and spatial scales. The time-dependent tails of the probability Loy i January 26 and 27, 1997
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- Thus, 1t 1s the objective of this study to present a method for deriving an underlying mathematical or model-free equation --- ‘ “éﬁ;—i 6 y Plains site. |
the Fokker-Planck equation --- that governs the time-dependent probability distributions of the fluctuations at different delay times i - 1 - 35 GHz MMCR backscattering
starting from observations of the backscattering cross-section. TR T cross section signal n(t)
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- It 1s the objective of this study to distinguish and quantify the deterministic and stochastic influences on 1(t) in cirrus clouds as described e e - Radiosonde measurements of
by the drift and diffusion coefficients of the Fokker-Planck equation. temperature, pressure, and

- These coefficients characterize the dynamics of the processes 1n the layers having different stratification. ice/water mixing ratio.

Defining the stratification - - - -
Ning . | Defining the layers Defining the time series
Based on the sign of the change in the potential
temperature and equivalent potential temperature Within each of the regions I, 11, III there are a number of layers defined. Backscattering cross section
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Method of analysis - Fokker-Planck Equation approach Conclusions:
Functional dependences of D) and D)
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h . . : : e The drift term DW(Az) shows a linear de- o
It is known that two equivalent master equa- Langevin Equation — for Az(At) Fokker-Planck Equation — for p(Az,7) pendence with Az, and the diffusion term ®
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